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Summary: The recently identified dihydro-leukotriene I3 metabolite 1 and its C(12)-epi 
analague 2 were prepared by Wittig coupling of segment 4 derived from 2-deoxy-D-ribose 
and &-glutamic acid. 

Leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent 

endogenous mediator of macrophage and neutrophil activity and, consequently, may play 

a major role in inflammation and acute hypersensitivity. 1 Human neutrophils rapidly 

metabolize LTB4 to biologically less active w-oxidized products. 2 In contrast, other cell 

types3 primarily convert LTB4 to a dihydro derivative recently assigned structure 1. 4a 

Stable isotope studies suggest that the reductase acts directly on LTBq without 

activation of the triene system via a keto intermediate. 4 It is also possible that the 

12(B)-stereoisomer 2 is present since dihydro-LTBq (1) can be further metabolized4 in a 

reversible reaction to 12-oxo-dihydro-L’I!B* (2). 

1: x=OH, Y=H 3 
2: X=H, Y=OH 

It is not known whether the reductase pathway plays a regulatory role’ leading to 

biologically inactive catabolites or is the source of a new family of eicosanoids with 

unique physiological properties. Support for the latter view is provided by the recent 
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characterization’ of dihydro-12-HETE in bovine cornea where it displays potent 

pro-inflammatory activity. To help address this and other urgent questions concerning 

dihydro metabolites as well as to clarify structure assignments, we report herein the 

asymmetric total synthesis of 1, and 2 using commercially available, chiral precursors. 

Our synthesis of the fragment corresponding to C(7)-C(20) (Scheme I) commenced 

with borane-methyl sulfide reduction of carboxylic acid 4, readily accessible from 

&- glutamic acid7 , followed by methanolysis of the derived primary tosylate to give 

epoxy-ester 58 (70%). Addition of the higher order cuprate’ (1.1 equiv) generated from 

(Z)-1-iodo-1-heptene7 (9) to a 0.1 M solution of 5 with concomitant lactonization 

furnished 6 (79%). [a]: + 17.7’ (c 3.7, MeOH); lit.” [a]i4 + 16.5’ (c 2.0, MeOH). 

Diisobutylaluminum hydride (DIBAL-H) reduction of jj and trans-specific homologation of 
11 the resultant lactol’ with methyl (triphenylphosphoranylidene)acetate yielded ester 1 

(82%) after silylation [TLC of I: Si02, Et20/hexanes (1: 6)) Rf % 0.411. The aBylic 

alcohol obtained from 1 upon hydride reduction was transformed by standard procedures 

to Wittig salt S12 (85%) [TLC of 8: SiO2, MeOH/CH2C12 (1: 9)) Rf ?r 0.291. 
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aBH3.Me2S, THF, 0’ to 23’C over 2h. bTsC1, C5H5N/CH2C12 (1:2.5), 24’C, 6h. 

‘NaOMe, MeOH, 20 min; AcOH to pH 7. d9, n-BuLi, Et20, -6O’C, 20 min; CuCN, -78’ 

to -45’C, 30 min; 5, -5O’C, 10 min. eDIBAL-H, PhCH3, -78’C, 3h. fPh3PCHC02Me 

(1.5 equiv), PhCH3, 23’C, 15h. g&-BuPh2SiCl, Et3N, DMAP, CH2C12, 45’C, 26h. 

hDIBAL-H, PhCH3, -78OC. Ih. *CBr4, Ph3P, CH2C12, lh. IPh3P, CH3CN, 6h. 

Union of methyl 5(S)-benzoyloxy-5$mylpentanoatelJ (l6) with the yllde of jj (1.2 

equiv) afforded 11 (62%) and its A ’ -trans isomer 12 (14%) after chromatographic 

purification [ HPLC: Altex Ultrasphere Si (4.6 x 250 mm, 5 V) , EtOAc/hexane (5: 95)) 

1 ml/min flow rate, Rt * 7.32 and 9.51 min for 1 and &3, respectively]. Desilylation of 



431 

11 with fluoride ion gave rise to alcohol 13 l4 (90%). [aIZ3 
D23 

+160° (c 1.69, CHC13), which 

was smoothly inverted to the 12(R)-isomer JJ (75%)) [ alD 

the Mitsunobu procedure. l5 

+141.7’ (c 1.2, CHC13), by 
* 

BzO 

OHC~co2Me a - 

^ _ 

76 Of0 + d”- Trans isomer 

12 

b 
90 o/o 

C 

75 o/o 

13 

BPS = t-BuPh,Si- Bz=PhCO- 

CO,Me 

at3, n-BuLi, THF/HMPA (4:1), -78”C, lh; add N -78’ to -5O’C over 1.5h. 
b 

n-Bu4NF, 

THF, 12h. ‘PhC02H, Ph3P, Et02CNNC02Et, PhCH3/pentane (l:l), O’C. 1.5h. 

Esters 13 and 14 were converted to 1 and 2, respectively, by saponification (LiOH, 

THF/H20 3:1), adjustment to pH 4.5, and extractive isolation 
16 . Initial chromatographic 

comparisons revealed that natural dihydro-LTB4 was an approximate 2:l mixture of 1 and 

2; none of the b6’7 -trans isomers of 1 was detected [SP-HPLC: Altex ROSIL (4.6 x 300 

mm, 5 p), hexane/isopropanol/acetic acid (933/66/l), 2 ml/min flow rate, Rt z 16.0, 

15.4, and 20.8 min for 1, 2, and A6’7-trans 1, respectively] .4a Additional results from 

investigations into the Occurrence and pharmacological profile of this novel class of 

eicosanoids will be reported elsewhere. 
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